
Journal of Global Optimization 24: 437–448, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

437

A Polynomial Time Approximation Scheme for the
Grade of Service Steiner Minimum Tree Problem

JOONMO KIM1, MIHAELA CARDEI1, IONUT CARDEI1 and XIAOHUA JIA2

1Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
55455, USA (e-mail: {jkim,mihaela,ionut}@cs.umn.edu); 2Department of Computer Science, City
University of Hong Kong, Kowloon Tong, Hong Kong (e-mail: jia@cs.cityu.edu.hk)

Abstract. In this paper, we present the design of a Polynomial Time Approximation Scheme (PTAS)
for the Grade of Service Steiner Minimum Tree (GOSST) problem, which is known to be NP-Complete.
Previous research has focused on geometric analyses and different approximation algorithms have
been designed. We propose a PTAS that provides a polynomial time, near-optimal solution with
performance ratio 1 + ε. The GOSST problem has some important applications. In network design,
a fundamental issue for the physical construction of a network structure is the interconnection of
many communication sites with the best choice of the connecting lines and the best allocation
of the transmission capacities over these lines. Good solutions should provide paths with enough
communication capacities between any two sites, with the least network construction costs. Also, the
GOSST problem has applications in transportation, for road constructions and some potential uses
in CAD in terms of interconnecting the elements on a plane to provide enough flux between any two
elements.

Key words: Approximation algorithms, Rectangular partitions, Grade of service Steiner minimum
tree, Network design

1. Introduction

The Grade of Service Steiner Minimum Tree (GOSST) problem [22] can be defined
as follows: Let P = {p1, p2, . . . , pn} be a set of n terminal points in the Euclidean
plane, where point pi has a service request of grade grade(pi) ∈ {1, 2, . . . , r}.
Let 0 < c(1) < c(2) < · · · < c(r) be r real numbers. Each edge in the network
is assigned a specific grade of service, which is a number in {1, 2, . . . , r}. We
use grade(e) to denote the grade of service of edge e. The cost-per-unit-length
(CPUL) for an edge with service grade u is c(u). The GOSST problem asks for
a minimum cost network interconnecting the point set P and some Steiner points
with service request of grade 0 such that (1) between each pair of terminal points
pi and pj there is a path whose minimum grade of service is at least as large as
min(grade(pi), grade(pj)) and (2) the cost of the network is minimum among all
interconnecting networks satisfying the condition (1), where the cost of an edge
with service of grade u is the product of the Euclidean length of the edge with
c(u).

438 J. KIM ET AL.

The GOSST problem is a generalization of the Euclidean Steiner Minimum Tree
(ESMT) problem, which is obtained when all terminal points have the same grade
of service request. The ESMT problem [12, 15] asks for a minimum cost network
interconnecting a set of given points in the Euclidean plane, where the network
cost is defined as the sum of the edge lengths. Reference [22] describes its history
and some major applications. Additional research results can be found in [4, 5, 8,
9, 11, 12–14, 17–19, 20, 21, 23].

In the GOSST problem, the minimum cost interconnecting network is determ-
ined by the combination of two factors: (i) the grade of service for each edge,
and (ii) the choice of Steiner points. That is, (i) and (ii) cannot be determined
one before another. Most research results refer to the case when the number of
grades of service request is either 2 or 3 [10], or some other particular cases [3, 7].
For the general case, Michandani [16] proposed an approximation algorithm with
performance ratio rρ + 1, where ρ is the best performance ratio of a Steiner tree
heuristic and r is the number of different grades of service request. In [6], Colburn
and Xue presented the GOSST problem on a series-parallel network and proposed
an O(r3n) time algorithm, where n is the number of vertices and r is the number
of grades of service.

Based on the problem characteristics, we propose a Polynomial Time Approx-
imation Scheme (PTAS) to the GOSST problem using the dynamic programming
approach to accomplish the general case solution. Still, using a classic dynamic
programming is impossible in this case. In our approach, we provide some adjust-
ments and use rectangular partitions [1, 2] to the problem instance to facilitate the
implementation of the dynamic programming. Fortunately, the GOSST problem
fits well to the Arora’s technique [1, 2], so we may proceed straightforward to the
(1+ε)-approximation.

The rest of this paper is organized as follows. Overall, Section 2 presents a
PTAS for the GOSST problem. Subsection 2.1 presents some definitions and the
Structure Theorem. Then, the PTAS is described in Subsection 2.2. Subsection 2.3
contains the proof for the Structure Theorem and Section 3 concludes the paper.

2. The GOSST Algorithm

As mentioned earlier, we apply Arora’s framework [1, 2] to the GOSST problem.
The basic idea of the PTAS is sketched next. For a given problem instance, the
Structure Theorem (Theorem 1) uses a recursive partition of the square containing
all given points and guarantees the existence of a (1+ε)-approximate solution that
crosses each line of the partition at most m times, where m = O((log n)/ε), such
that all the crossings happen at some prespecified points, called portals. A solution
characterized by these properties can be found with dynamic programming. In
other words, we decompose the instance of our problem into a large number of
smaller problems and apply dynamic programming to obtain a solution which is

A POLYNOMIAL TIME APPROXIMATION SCHEME 439

Figure 1. A 1/3:2/3 tiling

guaranteed by the Structure Theorem to be a (1 + ε)-approximate of the optimal
solution of the given instance.

2.1. DEFINITIONS AND THE STRUCTURE THEOREM

In this paper we understand by a rectangle an axis-aligned rectangle. All the defin-
itions that follow and apply to a rectangle are also valid for a square. The size of
a rectangle is the length of its longer edge. The bounding box of a set of terminal
points is the smallest square enclosing them. The optimal structure represents the
optimal cost network the GOSST problem asks for.

The cost of an interconnecting network is the sum of the products of the Euc-
lidean edge length with the cost-per-unit-length (CPUL) of that edge. The CPUL
for an edge with service grade u is c(u). The minimum CPUL is c(1) and the
maximum is c(r), where c(r) = C · c(1) and C is a constant.

A line separator of a rectangle R is a straight line segment parallel with R’s
shorter edge that partitions R into two rectangles, each having area at least one-
third of R’s area. For example, if R’s width W is greater than the height, then a line
separator is any verticle line in the middle W/3 of R.

Next we define a recursive partition of a rectangle, which is used by the dynamic
program algorithm.

DEFINITION 1 (1/3:2/3-tiling). A 1/3:2/3-tiling of a rectangle R is a binary tree
(a hierarchy) of sub-rectangles of R. The rectangle R is at the root. If the size R

is � 1, then the hierarchy contains nothing else. Otherwise the root contains a line
separator for R, and has two subtrees that are 1/3:2/3-tilings of the two rectangles,
into which the line separator divides R (see Figure 1).

The rectangles obtained in the tiling procedure at depth d form a partition of
the root rectangle. Also, all rectangles at depth d + 1 are a refinement of the depth
d partition, obtained by applying a line separator to each depth d rectangle of size
> 1.

DEFINITION 2 (portals). A portal in a 1/3:2/3-tiling is any point that lies on an
edge of any rectangle in the tiling. If m is any positive integer, then a set of portals
T is called m-regular for the tiling, if there are exactly m equidistant portals on the

440 J. KIM ET AL.

Figure 2. An m-light graph.

line separator of each rectangle of the tiling. We assume that the end points of the
line separator are also portals. In other words, the line-separator is partitioned into
exactly m − 1 equal parts by the portals on it.

DEFINITION 3 (m-light structure). Let m ∈ Z+ and π be an interconnecting net-
work instance for the GOSST problem that satisfies the conditions in the problem
definition. Let S be a 1/3:2/3-tiling of the bounding box and T be an m-regular
set of portals on this tiling. Then π is a m-light structure with respect to S if
the following are true: (i) in each rectangle of tiling S, the edges cross the line
separator of that rectangle at most m times (ii) the edges cross the line separator
only at portals in T (see Figure 2).

Next we present the Structure Theorem which guarantees that every COSST in-
stance has a (1 + ε)-approximate m-light structure. This Theorem will be proved
later, in subsection 2.3.

THEOREM 1 (Structure Theorem). The following is true for every ε > 0. Each
GOSST problem instance has a (1 + ε)-approximate m-light structure, where m =
O((log n)/ε).

In this paper we use the following abbreviations: APX, Approximation Structure;
OPT, Optimal Structure.

A POLYNOMIAL TIME APPROXIMATION SCHEME 441

Figure 3. Difference between the optimal and grid graph.

2.2. A PTAS FOR THE GOSST PROBLEM

In order to facilitate the design of the dynamic programming, we adjust the problem
instance to grids and then rescale the problem instance, making it well-rounded. In
addition we assume that the Steiner points lie only at the grids points. A well-
rounded instance will have the coordinates of the network points integral and the
minimum non-zero internode distance 1. Let us suppose the bounding box is a
square with edge length L. We equally divide the initial square into a g × g grid,
where g = O(n2) and then move each terminal point to its nearest gridpoint (see
Figure 3). Note that each point is moved by a distance less than L/g. Finally, divide
all distances in the new instance by L/g, so that the smallest internode distance is
1 and the size of the bounding box is g. Also, in the 1/3:2/3 tiling mechanism the
line separators will lie over the grid lines.

The next proposition shows that with the adjustments described above, a PTAS
of the grid instance is a PTAS of the original instance.

PROPOSITION 1. (1 + ε)-approximation over the grid instance implies (1 +
ε̂)-approximation over the original instance.

Proof.

|total_cost Original
OPT − total_cost Grid

OPT| � 2 · (2n − 3) · c(r)

where the number of edges of the tree structure is 2n − 3. Note that the maximum
number of points for the problem instance is 2n − 2, that is the sum of terminal
points and Steiner points. Both end points of an edge can move within the distance
1 (after the rescaling step), each with the highest service request of grade c(r).

|total_cost Original
APX − total_cost Grid

APX| � 2 · n2 · c(r)

442 J. KIM ET AL.

where n2 is greater than the worst case number of edges
(

n

2

)
, when the approxima-

tion graph is a complete network.
We know that:

total_cost Grid
APX � (1 + ε) · total_cost Grid

OPT

Based on these relations we get:

total_cost Original
APX � total_cost Grid

APX + 2n2c(r)

� (1 + ε) · total_cost Grid
OPT + 2n2c(r)

� (1 + ε)(total_cost Original
OPT + 2(2n − 3)c(r)) + 2n2c(r)

= total_cost Original
OPT ·

(
1 + ε + 2(1 + ε)(2n − 3)c(r) + 2n2c(r)

total_cost Original
OPT

)

The optimal cost of the original instance is at least c(1) multiplied with the size
of the bounding box:

total_cost Original
OPT � c(1) · g, where g = Ĉ · n2 and Ĉ is a constant.

So we obtain:

total_cost Original
APX � total_cost Original

OPT ·
(

1 + ε + 2C

Ĉ
·
(

1 + (1 + ε)(2n − 3)

n2

))
� total_cost Original

OPT · (1 + ε̂)

The value of ε̂ can be chosen correspondingly by properly choosing the value of
Ĉ. Note that g can be set to greater values (like O(n3), etc) by choosing a smaller
grid granularity. �
Based on this proposition, we will work on the grid version of the problem instance.

PROPOSITION 2. If the bounding box square has the size Ĉ · n2, then every
1/3:2/3 tiling has depth O(log n).

Proof. The area of any depth i rectangle is at most (2/3)i times the area of the
bounding box. Also, in order to apply the tilling over a rectangle it has to have the
size greater than 1. Therefore, for a rectangle at the last level, say the dth level, we
have (2/3)d−1. (Ĉn2)2 > 1. That is d = O(log n). �
We describe next the PTAS. Since ε > 0 is arbitrary, based on the results of
Proposition 1, we adjust the problem instance to the grid such that the minimum
interpoint distance is 1 and the bounding box has size O(n2). The Structure The-
orem guarantees the existence of a (1 + ε)-approximate m-light structure π and a
tiling S, where m = O((log n)/ε). By Proposition 2, the depth of such a tiling is

A POLYNOMIAL TIME APPROXIMATION SCHEME 443

O(log n). We describe next the dynamic programming that finds a minimum cost
m-light structure and its corresponding tiling in nO(1/ε) time.

The network in the GOSST problem contains both terminal points and Steiner
points. During the dynamic programming, the Steiner points that lie on a line sep-
arator are allowed to have assigned a grade of service different of 0, such that they
will behave more like temporary terminal points. The temporarily assigned grades
of service represent the potential effect of terminal points from some other parti-
tions on assigning grades of service to the edges. When the dynamic programming
ends, these Steiner points lying on some line separator will be reassigned the grade
of service 0. This final change does not affect the current grade of service of any
edge, so the network cost is unchanged.

First, we want to determine how a subproblem is defined. The conditions that
need to be satisfied are:
(1) It should contain the original problem as a special case.
(2) It should satisfy the following recursive relation:

Opt(P) = min
(P ′,P ′′)

(Opt(P ′) + Opt(P ′′) + cost(P ′, P ′′))

where P is a subproblem that can be partitioned into two subproblems P ′ and
P ′′ and cost(P ′, P ′′) is the cost of this partition.
To satisfy (2), we need to have

(2.1) For every partition (P ′, P ′′) of P ,

Opt(P) � Opt(P ′) + Opt(P ′′) + cost(P ′, P ′′)

(2.2) There exists a partition (P ′, P ′′) of P such that

Opt(P) = Opt(P ′) + Opt(P ′′) + cost(P ′, P ′′)

For the considered problem, we use only portals. This yields that cost(P ′,
P ′′) = 0. To satisfy (2.1), a simple way is to ask that

Opt(P ′) + Opt(P ′′) = Feasible(P)

A subproblem P is feasible if between each pair of terminal points pi and pj

from P there is a path whose minimum grade of service is at least as large as
min(grade(pi), grade(pj)).

Now, let us specify the definition of a subproblem. Each subproblem P contains
the following parameters:

(a) A rectangle R inside the bounding box.
(b) A multiset of portals on the four sides of R. One side contains exactly m

portals and each of the other three contains less than m portals.
(c) A multiset X of k(� 4m) portals on the four sides. These are the crosspoints.

444 J. KIM ET AL.

(d) A connection pattern (X1, X2, . . . , Xp) of X, where each set Xi identifies a
connected component (a tree). There is no edge crossing between different
components.

(e) A grade of service for each crosspoint in X.

The entry in the lookup table stores the lowest cost m-light structure found by
the algorithm for this instance of the subproblem P . In this m-light structure, the
ith connected component contains all portals from Xi and all connected compon-
ents contain all terminal points inside R. Each such instance can be broken into
many smaller and simpler instances, by choosing a line separator according to
the 1/3:2/3-tiling mechanism. Continuing this way we obtain smaller and smaller
instances of the problem, and we stop when the instance is small enough to allow
a brute-force solution.

The size of the lookup table is at most

#(a) × #(b) × #(c) × #(d) × #(e).

where #(x) represents the number of choices for (x). The number of choices in
(a) is O(n8). The number of choices in (b) is O(n12). The m portals on a line
separator are evenly spaced, so they are completely determined once we know
the line separator. Also the number of choices for a line separator is at most the
number of pairs of nodes, which is

(
n2

2

)
. One side of the rectangle R is a complete

line separator, so its portals are known, whereas the other three sides are parts
of the lines separator of some ancestor, accounting for the factor 4 · O((n4)3) =
O(n12). Once we have identified the portals, the number of ways of choosing a
multiset of k out of them is #(c) = O(24m+k).

The number of choices for (d) is O(2O(k)) and the number of choices for (e) is
at most rk, where r is the number of different grades of service request.

Therefore the total number of entries in the lookup table is upper bounded by

n8 × n12 ×
4m∑
k=1

24m+k · 2k · rk

= n20 × 24m ×
4m∑
k=1

(4r)k

� n20 × 24m ×
4m∑
k=1

(4r)4m

= n20 × (8r)4m × 4m

which is nO(1/ε), since m = O((log n)/ε) and rO((log n)/ε) = nO(1/ε).
We already mentioned that a leaf rectangle has a limited number of terminal

points, such that it can be solved by the brute-force in polynomial time. Solving

A POLYNOMIAL TIME APPROXIMATION SCHEME 445

a subproblem implies computing the cost of the network inside the corresponding
rectangle, by assigning grades of service to the edges. The grade of service of
Steiner points which are not portals is 0. If the lookup entry corresponds to the
root rectangle of the 1/3:2/3-tiling, then no set of portals or crosspoints need to
be considered for each side. This is the result of the dynamic programming and is
an m-light structure. For each other entry, we need to calculate an optimal m-light
structure recursively. Let R be a nonleaf rectangle. Each choice of (b), (c), (d) and
(e) for R decides an instance for the subproblem P . Let us see how the table entry
corresponding to the subproblem P is computed. The objective of the subproblem
P is to compute a minimum cost network G satisfying the following conditions:

• There exists a 1/3:2/3-partition of R such that G crosses the line separator
only at portals.

• For each pair of terminal points pi and pj in Xi there is a path whose minimum
grade of service is at least as large as min(grade(pi), grade(pj)).

• Each terminal point lying inside R is connected to a component Xi for some
i.

To get a partition (P ′, P ′′) of the subproblem P , we need to do the following:
(a′) Choose a line separator to cut R into two subrectangles R′ and R′′.
(b′) On the line separator, choose k′(� m) portals. These are the crosspoints,

where the network crosses the line separator.
(c′) In R′ and R′′ choose connection patterns (X′

1, X′
2, . . . , X′

p′) and (X′′
1 ,

X′′
2 , . . . , X′′

p′′) for crosspoints on the boundaries of R′ and R′′, respect-
ively. These two connection patterns should fit with the connection pattern
(X1, X2, . . . , Xp) in the following way:
(1) If Xi lies entirely in R′ (or R′′), then Xi ⊆ X′

j (or Xi ⊆ X′′
j) for some

j .
(2) If Xi is partitioned into two nonempty subsets A and B, where A lies in

R′ and B lies in R′′, then there exists a crosspoint c such that A∪c ⊆ X′
j

for some j and B ∪ c ⊂ X′′
h for some h.

(d′) Choose a grade of service for each k′ crosspoints of the line separator. For
the case (2), when Xi is partitioned into two nonempty subsets A and B,
the grade of service chosen for c needs to satisfy the inequality:

g(c) � min(max{grade(pi)|pi ∈ A}, max{grade(pj)|pj ∈ B})
Each choice of (a′), (b′), (c′) and (d′) decides two smaller instances whose op-

timal cost network solutions are already in the lookup table, so they do not need
to be computed again. From all the possible partition choices that issue a valid
instance for the subproblem P , the one with the smallest cost will be stored into
the lookup table.

Since #(a′) = O(n2), #(b′) = O(2m+k′
), #(c′) = O(2O(m)), #(d ′) = O(rk′

), the
running time for each entry takes = nO(1/ε).

Therefore the dynamic programming runs in time nO(1/ε).

446 J. KIM ET AL.

REMARK 1. The dynamic programming could also return the tiling S used in
obtaining the optimal cost m-light structure π . For this, every entry in the lookup
table, but the ones corresponding to the leaf rectangles, needs to store the line
separator used in computing the optimal value.

Note that through the dynamic programming all valid m-light structures have
been checked, while the Structure Theorem ensures that the minimum cost m-light
structure is within the expected approximation ratio.

2.3. PROOF OF THE STRUCTURE THEOREM

The Structure Theorem guarantees the existence of an m-light structure, within a
small error allowance from the optimal structure network. Once the existence of
such an m-light structure is shown, the minimum cost m-light structure is also
within the error allowance. Finding the minimum cost m-light structure is the goal
of the dynamic programming.

We prove the Structure Theorem constructively. We start from the optimal cost
network and modify it successively with respect to a specific tiling S until it be-
comes m-light in report with S. We describe next the way we transform the optimal
network into an m-light structure within a factor (1 + ε) of the optimal. We start
with the optimal network and an empty tiling. For each level in the tiling mech-
anism we choose the line separator that crosses the current network the least
number of times. Then the m-regular portals on this line separator are identified
and each crossing point is moved to its closest portal. The tiling mechanism has
depth O(log n) and the resulting network is an m-light structure.

Let us see now how much does this modification of the original optimal solution
increases the network cost. Let R be a rectangle at a certain level, with size W . We
look at each feasible line separator and choose the one that intersects the current
network the smallest number of points, say x points. Then the cost of the network
lying in the rectangle R is at least x · c(1) · W/3. Moving x crosspoints to portals
require to add some segments of cost at most x · c(r) ·W/(m − 1). Let us note with
total_cost(R) and total_cost∗(R) the cost of the network lying inside R before and
after applying the modification. Then we get:

total_cost∗(R) − total_cost(R)

total_cost(R)
� x · c(r) · W/(m − 1)

x · c(1) · W/3
= 3 · C

m − 1

where C is a constant, C = c(r)/c(1). This implies:

total_cost∗(R) �
(

1 + 3 · C

m − 1

)
· total_cost(R),

and because the tiling has depth O(log n), the resulting m-light network will be
an (1 + 3 · C/(m − 1))O(log n) approximate of the original optimal network. Since
m = O((log n)/ε), this validates (1 + 3 · C/(m − 1))O(log n) � 1 + ε, so we have
obtained an (1 + ε) approximation ratio. �

A POLYNOMIAL TIME APPROXIMATION SCHEME 447

This completes the proof of the Structure Theorem, theorem that has a key role
in this framework.

3. Conclusions

In this paper we studied the Grade of Service Steiner Minimum Tree problem.
This is a recent problem in literature, with some important applications in network
design and road interconnection areas. We presented a PTAS for the GOSST prob-
lem. We adjusted the problem instance to grids and used rectangular partitions to
the problem instance in order to facilitate the design of the dynamic programming
algorithm. We showed that, given a problem instance and a positive error parameter
ε, (i) the running time of the dynamic programming is polynomial in the size
of problem instance and (ii) based on the Structure Theorem, the output of the
dynamic programing is guaranteed to be a (1 + ε)-approximate solution.

References

1. Arora, S. (1996), Polynomial-Time Approximation Schemes for Euclidean TSP and other Geo-
metric Problems, Proceedings of 37th IEEE Symposium on Foundations of Computer Science,
pp. 2–12.

2. Arora, S. (1997), Nearly Linear Time Approximation Schemes for Euclidean TSP and other
Geometric Problems, Proceedings of 38th IEEE Symposium on Foundations of Computer
Science, pp. 554–563.

3. Balakrishnan, A., Magnanti, T.L. and Mirchandani, P. (1994), Modeling and Heuristic Worst-
Case Performance Analysis of the Two-level Network Design Problem, Management Science
40, 846–867.

4. Cockayne, E.J. and Hewgill, D.E. (1986), Exact Computation of Steiner Minimal Trees in the
Plane, Information Processing Letters 22, 151–156.

5. Cockayne, E.J. and Hewgill, D.E., (1992), Improved Computation of Plane Steiner Minimal
Trees, Algorithmica 7, 219–229.

6. Colbourn, C.J. and Xue, G. (2000), Grade of Service Steiner Trees on a Series-Parallel Net-
work, in Du, D.Z. Smith, J.M. and Rubinstein, J.H. (eds)., Advances in Steiner Trees, Kluwer
Academic Publishers, Dordrecht, pp. 163–174.

7. Current, J.R., Revelle, C.S. and Cohon, J.L. (1986), The hierarchical network design problem,
European Journal of Operational Research 27, 57–66.

8. Du, D.Z. and Hwang, F.K. (1990), An Approach for Proving Lower Bounds: Solution of
Gilbert-Pollak Conjecture on Steiner Ratio, Proceedings of IEEE 31st FOCS, 76–85.

9. Du, D.Z., Lu, B., Ngo, H. and Pardalos, P.M. (2000), Steiner Tree Problems, manuscript.
10. Duin, C. and Volgenant, A. (1991), The Multi-weighted Steiner Tree Problem, Annals of

Operations Research 33, 451–469.
11. Garey, M.R., Graham, R.L. and Johnson, D.S. (1997), The Complexity of Computing Steiner

Minimal trees, SIAM Journal of Applied Mathematics 32, 835–859.
12. Gilbert, E.N. and Pollack, H.O. (1968), Steiner Minimal Trees, SIAM Journal on Applied

Mathematics 16, 1–29.
13. Hwang, F.K. (1991), A Primer of the Euclidean Steiner Problem, Annals of Operations

Research 33, 73–84.
14. Hwang, F.K., Richard, D.S. and Winter, P. (1992), The Steiner Tree Problem, in Annals of

Discrete Mathematics 53, North-Holland, Amsterdam.

448 J. KIM ET AL.

15. Melzak, Z.A. (1961), On the Problem of Steiner, Canadian Mathematics Bulletin 4, 143–148.
16. Mirchandani, P. (1996), The Multi-tier Tree Problem, INFORMS Journal on Computing 8,

202–218.
17. Sarrafzadeh, M., Lin, W.-L. and Wong, C.K. (1998), Floating Steiner Trees, IEEE Transactions

on Computers 47, 197–211.
18. Smith, M.J. and Toppur, B. (1997), Euclidean Steiner Minimal Trees, Minimum Energy

Configurations, and the Embedding Problem of Weighted Graphs in E3, Discrete Applied
Mathematics 71, 187–215.

19. Winter, P. (1985), An Algorithm for the Steiner problem in the Euclidean Plane, Networks 15,
323–345.

20. Winter, P. and Zachariasen, M. (1996), Large Euclidean Steiner Minimum Trees in an Hour,
Technical report 96/34, http://www.diku.dk/pawel/publications.html.

21. Winter, P. and Zachariasen, M. (1998), Large Euclidean Steiner Minimum Trees: an improved
exact algorithm, Networks 30, 149–166.

22. Xue, G.L., Lin, G.H. and Du, D.Z. (2001), Grade of Service Steiner Minimum Trees in the
Euclidean Plane, Algorithmica, 31, 479–500.

23. Zelikovsky, A. (1993), An 11
6 -Approximation Algorithm for the Network Steiner Problem,

Algorithmica 9, 463–470.

